Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
J Oral Biosci ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38395254

RESUMO

BACKGROUND: Oral submucous fibrosis (OSF) is a pathological condition characterized by excessive tissue healing resulting from physical, chemical, or mechanical trauma. Notably, areca nut consumption significantly contributes to the development of oral fibrosis. The current definition of OSF, recognizing its potential for malignant transformation, necessitates a more comprehensive understanding of its pathophysiology and etiology. HIGHLIGHTS: Areca nut induces fibrotic pathways by upregulating inflammatory cytokines such as TGF-ß and expressing additional cytokines. Moreover, it triggers the conversion of fibroblasts to myofibroblasts, characterized by α-SMA and γSMA expression, resulting in accelerated collagen production. Arecoline, a component of areca nut, has been shown to elevate levels of reactive oxygen species, upregulate the expression of various cytokines, and activate specific signaling pathways (MEK, COX2, PI3K), all contributing to fibrosis. Therefore, we propose redefining OSF as "Areca nut-induced oral fibrosis" (AIOF) to align with current epistemology, emphasizing its distinctive association with areca nut consumption. The refined definition enhances our ability to develop targeted interventions, thus contributing to more effective prevention and treatment strategies for oral submucous fibrosis worldwide. CONCLUSION: Arecoline plays a crucial role as a mediator in fibrosis development, contributing to extracellular matrix accumulation in OSF. The re-evaluation of OSF as AIOF offers a more accurate representation of the condition. This nuanced perspective is essential for distinguishing AIOF from other forms of oral fibrosis and advancing our understanding of the disease's pathophysiology.

2.
J Oral Biol Craniofac Res ; 14(1): 63-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38261875

RESUMO

Background: Oral submucous fibrosis (OSF) is a persistent oral mucosal condition that carries an elevated risk of undergoing malignant transformation. Our objective was to elucidate the involvement of epithelial-to-mesenchymal transition (EMT) in OSF and its progression to malignancy by studying a panel of EMT markers, thereby understanding the molecular mechanisms. Methods: An immunohistochemical analysis was done to detect the presence of E-cadherin, N-cadherin, pan-cytokeratin (PanCK), vimentin, α-SMA (alpha-smooth muscle actin), and CD44 in a total of 100 tissue samples. These samples comprised 40 cases of OSF, 20 cases of oral squamous cell carcinoma associated with OSF (OSFSCC), and 40 cases of oral squamous cell carcinoma (OSCC). A whole transcriptomic analysis was performed on a group of seven matched samples encompassing NOM, OSF, OSFSCC, and OSCC. Results: We observed significantly decreased expression of E-cadherin and PanCK, while N-cadherin, vimentin, α-SMA, and CD44 showed significantly higher expression in OSFSCC and OSCC as compared to OSF, both at protein and RNA levels. CD44 expression was noticeably higher in OSFSCC (p < 0.001) than in OSCC. Conclusion: Downregulation of epithelial markers with concomitant upregulation of mesenchymal and stem cell markers suggests the potential role of EMT and stemness in accelerating the pathogenesis and malignant transformation of OSF. The high levels of CD44 expression seen in OSFSCC indicate a high propensity for aggressiveness and acquisition of stem-like characteristics by the cells undergoing EMT.

3.
Arch Oral Biol ; 159: 105872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147801

RESUMO

OBJECTIVE: Understanding the regulatory role of homeobox (HOX) and mutated genes in the progression of head and neck cancers is essential, although their interaction remains elusive. This study aims to decipher the critical regulation of mutation driven effects on homeobox genes to enhance our understanding of head and neck cancer progression. METHODS: Genomic mutation data from The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma were analyzed using VarScan2 for somatic variant detection. Mutational clustering, driver mutation identification, and cancer signaling pathway analysis were performed using the OncodriveCLUST method. Harmonizome datasets were retrieved to identify critical cancer driver genes affecting HOX genes. The effects of HPV infection on HOX and mutated genes were assessed using the oncoviral database. Altered pathway activity due to the effects of cancer drivers on HOX genes was analyzed with Gene Set Cancer Analysis. Functional enrichment analysis of gene ontology biological processes and molecular functions was conducted using the ClusterProfiler R package. RESULTS: Significant alterations in HOX genes were observed in head and neck cancer cohorts with mutated TP53, FAT1, and CDKN2A. HOX genes were identified as functionally downstream targets of TP53, signifying transcriptionally mediated regulation. The interaction between HOX genes and mutated TP53, FAT1, and CDKN2A dysregulated the epithelial-to-mesenchymal transition, cell cycle, and apoptosis pathways in head and neck cancer progression. CONCLUSION: The interplay between cancer driver genes and HOX genes is pivotal in regulating the oncogenic processes underlying the pathogenesis of head and neck squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Genes Homeobox/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/genética , Mutação
4.
F1000Res ; 12: 1239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38059135

RESUMO

Research output provides an insight into the development of the scientific capability of a country. Budget allocation for research and development (R&D) is directly proportional to the research output of a country. Bibliometric analysis of South American countries has not been done in many studies. The purpose of this paper was to analyse research outputs from South American countries on various metrics. An analysis was done for a period of 11 years from 2010 to 2020. The analysis revealed that Brazil with highest percentage of research spend has lowest Field Weighted Citation Impact (FWCI). This contrasts with Uruguay, whose FWCI is high despite comparatively lower spend on R&D and lower publication output. Although Argentina has the highest percentage of researchers per million population (1202), it has the least papers per researchers (0.3 per year) among the countries studied. A huge disparity in terms of percentage of research spent, research output, papers per researcher, and output with national and international co-authorship was observed.


Assuntos
Pesquisa Biomédica , Brasil , Bibliometria
5.
Artigo em Inglês | MEDLINE | ID: mdl-38062297

RESUMO

The HOXA9 transcription factor serves as a molecular orchestrator in cancer stemness, epithelial-mesenchymal transition (EMT), metastasis, and generation of the tumor microenvironment in hematological and solid malignancies. However, the multiple modes of regulation, multifaceted functions, and context-dependent interactions responsible for the dual role of HOXA9 as an oncogene or tumor suppressor in cancer remain obscure. Hence, unravelling its molecular complexities, binding partners, and interacting signaling molecules enables us to comprehend HOXA9-mediated transcriptional programs and molecular crosstalk. However, it is imperative to understand its central role in fundamental biological processes such as embryogenesis, foetus implantation, hematopoiesis, endothelial cell proliferation, and tissue homeostasis before designing targeted therapies. Indeed, it presents an enormous challenge for clinicians to selectively target its oncogenic functions or restore tumor-suppressive role without altering normal cellular functions. In addition to its implications in cancer, the present review also focuses on the clinical applications of HOXA9 in recurrence and drug resistance, which may provide a broader understanding beyond oncology, open new avenues for clinicians for accurate diagnoses, and develop personalized treatment strategies. Furthermore, we have also discussed the existing therapeutic options and accompanying challenges in HOXA9-targeted therapies in different cancer types.

6.
Diagnostics (Basel) ; 13(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38066780

RESUMO

(1) Background: The categorization of recurrent and non-recurrent odontogenic keratocyst is complex and challenging for both clinicians and pathologists. What sets this cyst apart is its aggressive nature and high likelihood of recurrence. Despite identifying various predictive clinical/radiological/histopathological parameters, clinicians still face difficulties in therapeutic management due to its inherent aggressive nature. This research aims to build a pipeline system that accurately detects recurring and non-recurring OKC. (2) Objective: To automate the risk stratification of OKCs as recurring or non-recurring based on whole slide images (WSIs) using an attention-based image sequence analyzer (ABISA). (3) Materials and methods: The presented architecture combines transformer-based self-attention mechanisms with sequential modeling using LSTM (long short-term memory) to predict the class label. This architecture leverages self-attention to capture spatial dependencies in image patches and LSTM to capture sequential dependencies across patches or frames, making it suitable for this image analysis. These two powerful combinations were integrated and applied on a custom dataset of 48 labeled WSIs (508 tiled images) generated from the highest zoom level WSI. (4) Results: The proposed ABISA algorithm attained 0.98, 1.0, and 0.98 testing accuracy, recall, and area under the curve, respectively, whereas VGG16, VGG19, and Inception V3, standard vision transformer attained testing accuracies of 0.80, 0.73, 0.82, 0.91, respectively. ABISA used 58% fewer trainable parameters than the standard vision transformer. (5) Conclusions: The proposed novel ABISA algorithm was integrated into a risk stratification pipeline to automate the detection of recurring OKC significantly faster, thus allowing the pathologist to define risk stratification faster.

7.
Diagnostics (Basel) ; 13(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958281

RESUMO

The microscopic diagnostic differentiation of odontogenic cysts from other cysts is intricate and may cause perplexity for both clinicians and pathologists. Of particular interest is the odontogenic keratocyst (OKC), a developmental cyst with unique histopathological and clinical characteristics. Nevertheless, what distinguishes this cyst is its aggressive nature and high tendency for recurrence. Clinicians encounter challenges in dealing with this frequently encountered jaw lesion, as there is no consensus on surgical treatment. Therefore, the accurate and early diagnosis of such cysts will benefit clinicians in terms of treatment management and spare subjects from the mental agony of suffering from aggressive OKCs, which impact their quality of life. The objective of this research is to develop an automated OKC diagnostic system that can function as a decision support tool for pathologists, whether they are working locally or remotely. This system will provide them with additional data and insights to enhance their decision-making abilities. This research aims to provide an automation pipeline to classify whole-slide images of OKCs and non-keratocysts (non-KCs: dentigerous and radicular cysts). OKC diagnosis and prognosis using the histopathological analysis of tissues using whole-slide images (WSIs) with a deep-learning approach is an emerging research area. WSIs have the unique advantage of magnifying tissues with high resolution without losing information. The contribution of this research is a novel, deep-learning-based, and efficient algorithm that reduces the trainable parameters and, in turn, the memory footprint. This is achieved using principal component analysis (PCA) and the ReliefF feature selection algorithm (ReliefF) in a convolutional neural network (CNN) named P-C-ReliefF. The proposed model reduces the trainable parameters compared to standard CNN, achieving 97% classification accuracy.

8.
Nanomedicine (Lond) ; 18(21): 1495-1514, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37830424

RESUMO

Buccal drug-delivery systems present a promising approach for the drug delivery to the buccal mucosa, addressing oral cavity-specific problems, enabling systemic delivery and minimizing adverse effects on biological systems. Numerous strategies have been proposed to load drug-containing nanoparticles (NPs) to the buccal mucosa for local and systemic applications. There has been considerable interest in the development of mucoadhesive buccal formulations, particularly hydrogel composites utilizing mucoadhesive films incorporating NPs. Drug permeability and controlled drug release through buccal drug delivery continues to pose a challenge despite the availability of various remedies. This review highlights the need for, mechanisms and latest advances in NP-based transbuccal drug delivery with a focus on various pathological disorders and examples and limitations of the different methods.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Administração Bucal , Nanotecnologia , Liberação Controlada de Fármacos
9.
Oral Dis ; 29(5): 1894-1904, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35466497

RESUMO

The objective of the study is to understand the role of experimentally validated microRNAs (miRNAs) contributing to the acquisition of oncogenic phenotype in oral submucous fibrosis (OSF) by computational analysis. A comprehensive review was carried out to corroborate and summarize altered miRNA expression in OSF by retrieving relevant publications querying MEDLINE, Web of Science, Embase, and Scopus. The association between the miRNA-mRNA was performed using miRTarBase 8.0. The visualization of the miRNA-mRNA interaction was plotted using Cytoscape. MIENTURNET was used for the pathway analysis. Enrichment analysis was carried out for elucidating the hierarchical functions of miRNAs related to the acquisition of biological processes involved in the development of cancer. Thirteen miRNAs (hsa-miR-499a, hsa-miR-200b, hsa-miR-200c, hsa-miR-1246, hsa-miR-31, hsa-miR-10b, hsa-miR-21, hsa-miR-203, hsa-miR-455, hsa-miR-760, hsa-miR-623, hsa-miR-610, and hsa-miR-509-3-5p) were found to be deregulated in OSF. A total of 371 experimentally validated genes were shown to be interacting with the OSF-associated miRNAs. The targets of antifibrotic and profibrotic miRNAs were enriched in the cancer-related pathways. Dysregulated miRNA and its target genes illustrate the physiological role of miRNAs in fibrosis. Understanding the miRNA-mediated fibrotic signaling and targetting the specific miRNA-target gene interaction might provide relevant cues to ameliorate the fibrotic disease.


Assuntos
MicroRNAs , Fibrose Oral Submucosa , Humanos , Fibrose Oral Submucosa/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética , Perfilação da Expressão Gênica
10.
Biochim Biophys Acta Rev Cancer ; 1878(1): 188840, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403923

RESUMO

Although there has been substantial improvement in the treatment modalities, cancer remains the major cause of fatality worldwide. Metastasis, recurrence, and resistance to oncological therapies are the leading causes of cancer mortality. Epithelial-mesenchymal transition (EMT) is a complex biological process that allows cancer cells to undergo morphological transformation into a mesenchymal phenotype to acquire invasive potential. It encompasses reversible and dynamic ontogenesis by neoplastic cells during metastatic dissemination. Hence, understanding the molecular landscape of EMT is imperative to identify a reliable clinical biomarker to combat metastatic spread. Accumulating evidence reveals the role of HOX (homeobox) cluster-embedded long non-coding RNAs (lncRNAs) in EMT and cancer metastasis. They play a crucial role in the induction of EMT, modulating diverse biological targets. The present review emphasizes the involvement of HOX cluster-embedded lncRNAs in EMT as a molecular sponge, chromatin remodeler, signaling regulator, and immune system modulator. Furthermore, the molecular mechanisms behind therapy resistance and the potential use of novel drugs targeting HOX cluster-embedded lncRNAs in the clinical management of distant metastasis will be discussed.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Genes Homeobox , Transdução de Sinais
11.
Nanomedicine (Lond) ; 18(27): 2061-2080, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38197397

RESUMO

Oral squamous cell carcinoma (OSCC) is an invasive and highly malignant cancer with significant morbidity and mortality. Existing treatments including surgery, chemotherapy and radiation have poor overall survival rates and prognosis. The intended therapeutic effects of chemotherapy are limited by drug resistance, systemic toxicity and adverse effects. This review explores advances in OSCC treatment, with a focus on lipid-based platforms (solid lipid nanoparticles, nanostructured lipid carriers, lipid-polymer hybrids, cubosomes), polymeric nanoparticles, self-assembling nucleoside nanoparticles, dendrimers, magnetic nanovectors, graphene oxide nanostructures, stimuli-responsive nanoparticles, gene therapy, folic acid receptor targeting, gastrin-releasing peptide receptor targeting, fibroblast activation protein targeting, urokinase-type plasminogen activator receptor targeting, biotin receptor targeting and transferrin receptor targeting. This review also highlights oncolytic viruses as OSCC therapy candidates.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Nanopartículas , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Bucais/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Lipídeos/uso terapêutico
12.
J Oral Maxillofac Pathol ; 27(4): 706-714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304518

RESUMO

Background: Inflammatory cells and cytokines in the chronically injured mucosa promote fibrosis in the oral submucous fibrosis (OSF) fibrotic milieu. Osteopontin (OPN) is a wound-healing mediator that upregulates the inflammatory response and is involved in the malignancy and fibrosis of multiple organ systems. Objectives: We investigated the expression of OPN in oral potentially malignant disorders (OPMDs) and oral squamous cell carcinomas (OSCCs) to determine its role in the malignant transformation and fibrosis of oral tissues. The expression of OPN in OPMDs and OSCCs was compared and correlated, and the role of OPN as a fibrotic mediator in OSF was explained. Study Design: A total of 30 cases of normal mucosa and OPMDs (mild dysplasia, severe dysplasia, OSF and OSCCs) were studied by purposive sampling. In these groups, OPN immunoreactivity was examined and correlated with clinical findings. Results: In mild dysplasia, OPN expression was restricted to the basal cell layer with moderate staining intensity. In severe dysplasia, it was extremely intense and extended throughout the epithelium. In the OSF, OPN expression was moderate in the perinuclear areas of the basal cell layer. The expression of OPN was very strong in OSCC. A flow diagram explaining the profibrotic role of OPN in OSF has been provided. Conclusion: A positive role of OPN in both pathogenesis and malignant transformation of OPMDs and OSCC has been demonstrated.

14.
Cancer Biomark ; 35(3): 257-268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245370

RESUMO

PURPOSE: Aberrant DNA methylation plays a crucial role in oral carcinogenesis. Our previous study demonstrated hypermethylation of DAPK1, LRPPRC, RAB6C, and ZNF471 promoters in patients with tongue squamous cell carcinoma compared with normal samples. Methylation profiling using salivary DNA is considered a non-invasive alternative to tissue samples. Hence, the present study tested the DNA methylation status of these four promoters as indicators of oral cancer progression. METHODS: We performed the bisulfite-based targeted next-generation sequencing of four candidate genes in saliva and tissue DNA from normal, premalignant, and squamous cell carcinoma subjects. The clinicopathological association, diagnostic, and prognostic utility of aberrant DNA methylation were evaluated using the TCGA-HNSCC dataset. Using the Xgboost algorithm and logistic regression, CpG sites were prioritized, and Receiver Operating Characteristic was generated. By Log-rank test and Kaplan-Meier (KM) curves, an association between methylation and overall survival (OS), disease-free interval (DFI), and progression-free interval (PFI) were computed. RESULTS: We identified all four genes as significantly hypermethylated in premalignant and malignant samples compared with normal samples. The methylation levels were comparable between saliva and tissue samples with an r-value of 0.6297 to 0.8023 and 0.7823 to 0.9419 between premalignant tissue vs. saliva and OC vs. saliva, respectively. We identified an inverse correlation between DAPK1, LRPPRC, RAB6C, and ZNF471 promoter methylation with their expression. A classifier of 8 differentially methylated CpG sites belonging to DAPK1, RAB6C, and ZNF471 promoters was constructed, showing an AUC of 0.984 to differentiate tumors from normal samples. The differential methylation status of DAPK1, LRPPRC, and ZNF71 promoters was prognostically important. Abnormal expression of all four genes was associated with immune infiltration. CONCLUSIONS: Thus, methylation analysis of these candidate CpG sites from saliva can be helpful as a non-invasive tool for the clinical management of OC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas/genética , Ilhas de CpG/genética , DNA , Metilação de DNA , Neoplasias de Cabeça e Pescoço/genética , Proteínas rab de Ligação ao GTP , Neoplasias da Língua/genética , Saliva
15.
Genes Dis ; 9(6): 1443-1465, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36157483

RESUMO

Ovarian cancer (OC) is one of the most common and fatal types of gynecological cancer. OC is usually detected at the advanced stages of the disease, making it highly lethal. miRNAs are single-stranded, small non-coding RNAs with an approximate size ranging around 22 nt. Interestingly, a considerable proportion of miRNAs are organized in clusters with miRNA genes placed adjacent to one another, getting transcribed together to result in miRNA clusters (MCs). MCs comprise two or more miRNAs that follow the same orientation during transcription. Abnormal expression of the miRNA cluster has been identified as one of the key drivers in OC. MC exists both as tumor-suppressive and oncogenic clusters and has a significant role in OC pathogenesis by facilitating cancer cells to acquire various hallmarks. The present review summarizes the regulation and biological function of MCs in OC. The review also highlights the utility of abnormally expressed MCs in the clinical management of OC.

16.
J Oral Pathol Med ; 51(8): 702-709, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36087273

RESUMO

BACKGROUND: Mitochondrial fission and fusion processes are known as mitochondrial dynamics and the occurrence of imbalances in the mitochondrial activity is related to the pathogenesis of many human cancers. However, the importance of mitochondrial dynamics in malignant salivary gland tumours remains unknown. Therefore, we aimed to investigate its prognostic significance in adenoid cystic carcinoma. METHODS: Fifty-seven formalin-fixed paraffin-embedded cases were retrieved and disposed in tissue microarray. Histological sections were submitted to immunohistochemical reactions against AMT, DRP1, FIS1, MFN1, MFN2 and OPA1 proteins. Clinical data were retrieved from the patients' medical files, including specific and disease-free survival data. RESULTS: It was observed that 50.9% of the cases were strongly positive for AMT and DRP1, and 49.1%, 21.1%, 22.8% and 24.6% strongly positive for FIS1, MFN1, MFN2 and OPA1, respectively. Reactions were observed in both epithelial and myoepithelial components of the tumour. The higher expression of MFN2 was associated with solid microscopic pattern (p = 0.016). DRP1 overexpression showed a trend towards a shorter overall survival (p = 0.054), while negative/weak OPA1 showed a trend towards a lower disease-free survival (p = 0.051) in the univariate analysis, but no mitochondrial marker represented an independent prognostic determinant under multivariate analysis. CONCLUSION: In conclusion, mitochondrial dynamics markers do not seem to carry a prognostic significance for adenoid cystic carcinoma patients, but these proteins may play an important role in its pathogenesis.


Assuntos
Carcinoma Adenoide Cístico , Dinâmica Mitocondrial , Carcinoma Adenoide Cístico/metabolismo , Humanos , Mitocôndrias
17.
J Oral Pathol Med ; 51(8): 684-693, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35766359

RESUMO

OBJECTIVES: We aim to elucidate the interaction of long noncoding RNAs with HOX genes and their regulatory role and potential drug candidates in oral cancer. MATERIALS AND METHODS: The interaction network was constructed using RNA Interactome and the RNA Interactome from the Sequencing Experiments database. The differential expression of HOX genes and HOX interacting lncRNAs was assessed using the TCGA-Head and Neck Squamous Cell Carcinoma oral cancer dataset using DESeq2 R-package. Further, the functional enrichment analysis was performed for the differentially expressed HOX genes and HOX-interacting lncRNAs using Gene Ontology, long noncoding RNA Set Enrichment Analysis, lncRNA ontology annotation extractor and repository (Lantern), and LncRNA Ontology tools. Drug-lncRNA interaction and the effect of drugs on lncRNA expression were assessed from the D-lnc tool. RESULTS: A total of 78 unique interactions were identified between HOX and lncRNAs. Differential expression analysis showed 27 HOX genes and 10 HOX-interacting lncRNAs in oral cancer. HOX genes and HOX-interacting lncRNAs were involved in crucial regulatory processes like cell cycle regulation, cell proliferation and migration, epithelial-mesenchymal transition, angiogenesis, and cell signaling pathways. Cancer hallmark analysis from using long noncoding RNA Set Enrichment Analysis showed the involvement of HOTAIR, HOTTIP MIR503HG, and CDKN2B-AS1 in proliferation, migration, and invasion. Panobinostat was the common drug that influenced the expression of HOTAIR, HOTAIRM1, HOTTIP and CDKN2B-AS1. CONCLUSIONS: Differentially expressed HOX-interacting lncRNAs are involved in various regulatory biological processes and cancer hallmark events in oral cancer. CLINICAL RELEVANCE: The creation of interaction networks may expand the existing knowledge of oral cancer signaling pathways and the discovery of novel targets.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , RNA Longo não Codificante , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neoplasias Bucais/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
18.
Sci Rep ; 12(1): 10123, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710803

RESUMO

The role of evolutionarily conserved homeobox-containing HOX genes as transcriptional regulators in the developmental specification of organisms is well known. The contribution of HOX genes involvement in oral cancer phenotype has yet to be fully ascertained. TCGA-HNSC HTSeq-counts and clinical data were retrieved from the GDC portal for oral cavity neoplasms. GEO datasets (GSE72627, GSE30784, GSE37991) were accessed and analyzed using GEO2R. Differential HOX gene expression was profiled using the DESeq2 R package with a log2 fold change cut-off (- 1 and + 1) and Benjamini-Hochberg p-adjusted value at ≤ 0.01. Gene set over-representation analysis and semantic analysis associated with the disease ontology was performed using the ClusterProfiler R package, and pathway over-representation analysis was performed using IMPaLa. HOX protein interaction network was constructed using the Pathfind R package. HOX phenotype associations were performed using Mammalian Phenotype Ontology, Human Phenotype Ontology, PhenGenI associations, Jensen tissues, and OMIM entries. Drug connectivity mapping was carried out with Dr. Insight R package. HOXA2 was upregulated in oral dysplasia but silenced during tumor progression. Loss of HOXB2 expression was consistent in the potentially malignant oral lesions as well as in the primary tumor. HOXA7, HOXA10, HOXB7, HOXC6, HOXC10, HOXD10, and HOXD11 were consistently upregulated from premalignancy to malignancy and were notably associated with risk factors. Overrepresentation analysis suggested HOXA10 was involved in the transcriptional misregulation contributing to the oral cancer phenotype. HOX genes subnetwork analysis showed crucial interactions with cell cycle regulators, growth responsive elements, and proto-oncogenes. Phenotype associations specific to the oral region involving HOX genes provide intrinsic cues to tumor development. The 5' HOX genes were aberrantly upregulated during oral carcinogenesis reflecting their posterior prevalence.


Assuntos
Genes Homeobox , Neoplasias Bucais , Animais , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mamíferos/metabolismo , Neoplasias Bucais/genética , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Biophys Rev ; 14(2): 463-481, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35528030

RESUMO

Optical microscopy has emerged as a key driver of fundamental research since it provides the ability to probe into imperceptible structures in the biomedical world. For the detailed investigation of samples, a high-resolution image with enhanced contrast and minimal damage is preferred. To achieve this, an automated image analysis method is preferable over manual analysis in terms of both speed of acquisition and reduced error accumulation. In this regard, deep learning (DL)-based image processing can be highly beneficial. The review summarises and critiques the use of DL in image processing for the data collected using various optical microscopic techniques. In tandem with optical microscopy, DL has already found applications in various problems related to image classification and segmentation. It has also performed well in enhancing image resolution in smartphone-based microscopy, which in turn enablse crucial medical assistance in remote places.

20.
Front Pharmacol ; 13: 888280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600864

RESUMO

A burning sensation on eating spicy foods purportedly supports the role of capsaicin, an active component of chili peppers, in the etiology of oral submucous fibrosis (OSF). Although the mast cell mediators and activated P2X receptors induce a constant burning sensation through an ATP-dependent mechanism, it is the activation of the transient receptor potential vanilloid 1 (TRPV-1) receptor by capsaicin that aggravates it. The molecular basis for the burning pain in OSF is thus attributable to the activation of TRPV1. There is overwhelming evidence that confirms capsaicin has more of a protective role in attenuating fibrosis and is potentially therapeutic in reversing conditions linked to collagen accumulation. The activation of TRPV-1 by capsaicin increases intracellular calcium ([Ca2+]i), upregulates AMP-activated protein kinase (AMPK) and Sirtuin-1 (SIRT-1), to enrich endothelium-dependent vasodilation via endothelial nitric oxide synthase (eNOS). The induction of vasodilation induces antifibrotic effects by alleviating hypoxia. The antifibrotic effects of capsaicin are mediated through the upregulation of antioxidant enzymes, downregulation of inflammatory genes and suppression of new collagen fibril formation. Capsaicin also demonstrates an anticarcinogenic effect by upregulating the cytotoxic T cells and downregulating regulatory T cells through the inhibition of angiogenesis and promotion of apoptosis. Judicious administration of capsaicin with an appropriate delivery mechanism may have therapeutic benefits in reducing pain sensation, rendering antifibrotic effects, and preventing the malignant transformation of OSF. This paper provides an overview of the molecular basis of capsaicin and its therapeutic application as an antifibrotic and anticarcinogenic agent for the treatment of OSF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...